(a		(making) fertilisers/nitric acid/nylon/explosives/urea (for) cleaning products (allow oven cleaner)/refrigeration				
(b)	equ	equilibrium / reversible				
(c)	(nit	(nitrogen)air/atmosphere				
		(hydrogen) methane/water/steam/alkane/named alkane/hydrocarbon/crude oil or petroleum/natural gas				
(d)	iror	1	[1]			
(e)	(i)	rate increases/faster				
		More (effective) collisions	[1]			
	(ii)	yield decreases	[1]			
		(forward reaction) exothermic/reverse reaction endothermic/high temp favours endothermic reaction	[1]			
(f)	(i)	yield increases	[1]			
		less / fewer molecules or moles or volume on RHS ORA / high pressure favours reaction which produces fewer molecules or moles or volume	[1]			
	(ii)	particles/molecules closer/more particles per unit area or volume/more molecules per unit area or volume/more concentration/particles have less space between them and more collisions	[1]			
	(iii)	safety issues/higher cost	[1]			
(g)	3 bond pairs between N & H					
	Lone pair on N					
(h)) (proton / H ⁺ acceptor				
	(ii)	$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$	[2]			
		Formula of (NH ₄) ₂ SO ₄ (1) The rest (1)				

[Total:18]

1

2 (a	faster reaction rate (1) higher collision rate (1) greater yield or favour RHS (1) pressure favours products because it has lower volume/fewer product molecules (1)	[4]
(b	higher temperature favour endothermic reaction (1) this is the back reaction/left hand side/reactants (1) reduce yield (1)	[3]
(c	greater surface area (1)	[1]
	 (ii) increase reaction rate (1) can use a lower temperature to have an economic rate (1) and not decrease yield (by increasing temperature). 	[2]
(d)	lower the temperature (1) only ammonia will liquefy (1) OR add water (1) only ammonia will dissolve (1) OR increase pressure (1) only ammonia will liquefy (1)	[2]
(e)	second line $+3 \times 155 = +465$ third line $-3 \times 280 = (-)840$ fourth line $-3 \times 565 = (-)1695$ all three correct (2) two correct (1)	
	1170 + 465 = 1635 840 + 1695 = 2535 both numerically correct (1) exothermic reaction with some reasoning (1)	[4] Total: 16]

3	(a (i)	any Group 1 metal ACCEPT: lithium	[1]
	(ii)	$2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$ PbO [1] COND balancing [1]	[2]
	(iii)	the metal in a (i) is more reactive than lead more reactive metals have more stable compounds	[1]
		OR has stronger (ionic) bonding	[1]
	(b) (i)	speed / rate of forward reaction = speed / rate of back reaction OR macroscopic properties do not change / constant (with time)	[1]
	(ii)	goes darker OR goes brown COND lower pressure favours side with more moles	[1] [1]
		COND this is NO_2 side OR reactant side OR goes left	[1]
	(iii)	exothermic	[1]
		low temperatures favour the exothermic reaction or low temperatures moves equilibrium to right / product side / towards N_2O_4	[1]
		1000 temperatures moves equilibrium to right / product side / towards 10204	[']
	(iv)	forward reaction is bond forming	[1]

4	(a	(i)	accept all metals excluding Group I (lithium is acceptable) not lead accept silver	[1]
		(ii)	M nitrite / nitrate(III) not nitride	[1
	(b)	(i)	not reverse reaction is endothermic as the question asks about the forward reaction	[1]
			cond forward reaction favoured by low temperature / reverse reaction favoured by high temperature second mark only scores if exothermic is correct.	[1]
		(ii)	position of equilibrium to right / forwards / more products / more N_2O_4 / lighter colour because this side has smaller volume / fewer moles	[1] [1]
	(c)	c) if the final answer is between 86–89% award all 4 if the final answer is between 66–67% award 3 marks (M _r of 32 must have been used) for all other answers marks can be awarded using the mark scheme as below and ap ecf if necessary		

number of moles of O_2 formed = 0.16/24 = 0.0067/0.00667 or 1/150 number of moles of Pb(NO₃)₂ in the sample = 0.0133/0.013 or 1/75 mass of one mole of Pb(NO₃)₂ = 331 g mass of lead(II) nitrate in the sample = 4.4(1) g percentage of lead(II) nitrate in sample = 88.3% (**allow** 88–89)

[4]

mark **ecf** in this question but **not** to simple integers if mass of lead(II) nitrate > 5.00 only marks 1 and 2 available If divides by 32 (not 24) only last 3 marks can score consequentially